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ABSTRACT: We bring to the surface the fundamental two-sidedness of knowledge in the
framework of association rules, until now only slumberingly present in the measures of support
and confidence. We identify the set of positive as well as the set of negative examples which
are not necessarily complementary. Taking this into account we introduce new quality measures
comprising the existing ones. Finally, we carefully examine the generalization of our findings to
fuzzy association rules.
Keyword: fuzzy association rule, support, opposition, positive example, negative example

1 INTRODUCTION

The idea behind association rules [1] is straightforward and effective, which, together with the
increasing availability of large databases, probably accounts for their success story. Coming from
the world of shops and customers, the underlying mechanism aims to identify frequent itemsets
in market baskets, i.e. groups of products frequently bought together. This valuable information
helps shop-keepers to make decisions about what to put on sale, how to place merchandise on shelfs
to maximize a cross-selling effect etc. Needless to say the same mechanism can be exploited for
knowledge discovery in databases in general.
Suppose we have a data table containing records described by binary attribute values. Let X

be the non-empty, finite universe of these records. Each record x in X corresponds to a transaction
(a market basket). For each attribute A, A(x) is either 1 or 0 indicating whether or not attribute
A was purchased in transaction x. An association rule is an expression of the form A ⇒ B in
which A and B are attributes (or sets of attributes), such as bread ⇒ butter. The meaning is that
when A is bought in a transaction, B is likely to be bought as well. The symbol ⇒ does not have
any further (mathematical) meaning. There exist several measures to express the quality of an
association rule, such as the support (the number of transactions in which both A and B were
bought) and the confidence (the percentage of transactions containing A that contain B as well).
The problem of mining association rules is to generate all association rules that have support and
confidence greater than user-specified thresholds.
In this respect association rule mining algorithms only look at positive examples: especially

when determining the degree of support they only check how many of the transactions are in
favour of the rule. However, in the set of transactions not in favour of the rule, an interesting
distinction can be made between those examples that contradict the rule and those that do not
carry relevant information for the rule. In ignoring this distinction, traditional association rule
mining algorithms do not address the fundamental two-sidedness of knowledge.
Active exploitation of this two-sidedness can enrich information technologies significantly. A

striking example is the rapid growing theory of intuitionistic fuzzy sets [2]: by complementing
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x A⇒ B B ⇒ A
positive example x ∈ A ∧ x ∈ B x ∈ A ∧ x ∈ B

non-positive example x /∈ A ∨ x /∈ B x /∈ A ∨ x /∈ B
negative example x ∈ A ∧ x /∈ B x /∈ A ∧ x ∈ B

non-negative example x /∈ A ∨ x ∈ B x ∈ A ∨ x /∈ B

Table 1: The nature of transaction x w.r.t. rules A⇒ B and B ⇒ A

A⇒ B
minimum support (minsupp) |A ∩B|
maximum opposition (maxopp) |coA ∪ coB|
minimum opposition (minopp) |A ∩ coB|
maximum support (maxsupp) |coA ∪ B|

Table 2: Overview of measures

the membership degree (familiar from fuzzy sets) with a non-membership degree, a whole new
spectrum of knowledge can be expressed. In this paper we take a similar view, namely that “not
being a positive example” of a rule (i.e. not being a transaction that supports the rule) is not the
same as “being a negative example” (i.e. a transaction that contradicts the rule). In Section 2 we
will point out the true nature of positive and negative examples in the framework of association
rule mining, and, taking them into account, we will define new measures of support and confidence
comprising the commonly used measures. In Section 3 we will carefully examine the generalization
of our findings to fuzzy association rules.

2 POSITIVE AND NEGATIVE EXAMPLES

For ease of notation we will use the same symbol A to denote the attribute A and the set of
transactions having attribute value A(x) = 1, i.e. A(x) = 1 iff x ∈ A, and A(x) = 0 iff x /∈ A. In
this way, A is a subset of X. Furthermore we will only deal with simple association rules A⇒ B in
which A and B are both attributes (and not sets of attributes; note that this is not a real limitation
since we can always introduce a new attribute combining several others).

Support. The support of an association rule A⇒ B is usually defined as1

supp(A⇒ B) = |A ∩ B|

i.e. the number of elements belonging to both A and B. Indeed only those elements can be seen as
positive examples, fully supporting the rule A⇒ B. Note that exactly those elements are also the
positive examples of the rule B ⇒ A, i.e. the support of B ⇒ A is the same as that of A⇒ B.
As soon as one identifies these “supporters” of A⇒ B as positive examples, the question arises

what a negative example might look like. Note that the rule A ⇒ B is contradicted by exactly
those records belonging to A but not to B. The notion “negative example of A ⇒ B” is distinct
from “negative example of B ⇒ A” as is shown in Table 1. It is also clear from this table that
“negative example” differs from “non-positive example”, just like “positive example” and “non-
negative example” are distinct notions. The most interesting part however is that they all give rise
to different measures, as shown in Table 2. Naturally,

minsupp(A⇒ B) � maxsupp(A⇒ B)

minopp(A⇒ B) � maxopp(A⇒ B)

Since
maxopp(A⇒ B) = |X | −minsupp(A⇒ B)

1or supp(A⇒ B) = |A ∩B|/|X|
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minopp(A⇒ B) = |X | −maxsupp(A⇒ B)
in reality we are only dealing with two independent measures. We can for instance choose to work
with minsupp and maxsupp. The measure minsupp corresponds to the symmetrical support (supp)
that is traditionally studied, while maxsupp is a non-symmetrical measure taking into account all
examples that do not contradict A ⇒ B. Another way of expressing the two opposition measures
in terms of the support measures is

minopp(A⇒ coB) = minsupp(A⇒ B)

maxopp(A⇒ coB) = maxsupp(A⇒ B)

Confidence. If the support of an association rule A ⇒ B exceeds a user-specified threshold, its
confidence is investigated. This is usually defined as

conf(A⇒ B) = supp(A⇒ B)
supp(A⇒ X) =

supp(A⇒ B)
supp(A⇒ B) + supp(A⇒ co B)

or [5]

confn(A⇒ B) = supp(A⇒ B)
supp(A⇒ co B)

The latter can be written in terms of the newly defined measures of support and opposition:

confn(A⇒ B) = minsupp(A⇒ B)
minopp(A⇒ B)

Hence the confidence of a rule is the number of positive examples of the rule divided by the number
of negative examples. Using the measures of maximum support and opposition as well, we introduce
two new measures of confidence, namely pessimistic and optimistic confidence:

confp(A⇒ B) = minsupp(A⇒ B)
maxopp(A⇒ B) confo(A⇒ B) = maxsupp(A⇒ B)

minopp(A⇒ B)

When determining the pessimistic confidence of a rule bread ⇒ butter we have the following as-
sumption in mind: if those people who did not buy bread, would have bought bread, they would
not have bought butter as well. For the optimistic confidence measure on the other hand we assume
that if those people who did not buy bread, would have bought bread, they would have bought
butter as well. Naturally: confp(A ⇒ B) � confn(A ⇒ B) � confo(A ⇒ B). Since all these mea-
sures of confidence are defined in terms of measures of opposition and support, and furthermore
the opposition measures can be described in terms of the support measures, in the remainder we
will focus on minsupp and maxsupp.

3 FUZZY ASSOCIATION RULES

In most real life applications, databases contain many other attribute values besides 0 and 1. Very
common for instance are quantitative attributes such as age or income, taking values from an ordinal
scale. One way of dealing with a quantitative attribute is to replace it by a few other attributes
that partition the range of the original one, such as low, medium and high. Now one can consider
these new attributes as binary ones, which reduces the problem to the mining procedure described
above (the generated rules are now called quantitative association rules [8]). It is however far
more intuitively justifiable to allow attribute values from the interval [0, 1] (instead of just {0, 1})
indicating the degree to which the record has the attribute. In this way attributes are no longer
binary but fuzzy. The corresponding mining process yields fuzzy (quantitative) association rules
(see e.g. [3], [6]).
To obtain such rules the measures discussed above have to be generalized in a suitable way.

The power of a fuzzy set A in a finite universe X was introduced as a generalization of the classical
concept of cardinality of a crisp set [4]. It is defined as

|A| =
∑

x∈X
A(x)
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t− norm t− conorm
TM(x, y) = min(x, y) SM(x, y) = max(x, y)

TP(x, y) = xy SP(x, y) = x+ y − xy
TW(x, y) = max(x+ y − 1, 0) SW(x, y) = min(x+ y, 1)

Table 3: Well-known t-norms and t-conorms

S− implicator Residual implicator

ISM(x, y) = max(1− x, y) ITM(x, y) =
{
1, if x � y
y, otherwise

ISP(x, y) = 1− x+ xy ITP(x, y) =
{
1, if x � y
y
x , otherwise

ISW(x, y) = min(1− x+ y, 1) ITW(x, y) = min(1− x+ y, 1)

Table 4: Well-known implicators

Fuzzy set theoretical counterparts of complement, intersection, and union are usually defined by
means of a negator, a t-norm, and a t-conorm. Recall that an increasing, associative and commu-
tative [0, 1]2 − [0, 1] mapping is called a t-norm T if it satisfies T (x, 1) = x for all x in [0, 1], and
a t-conorm S if it satisfies S(x, 0) = x for all x in [0, 1]. A negator N is a decreasing [0, 1]− [0, 1]-
mapping satisfying N (0) = 1 and N (1) = 0. For A and B fuzzy sets in X :

coNA(x) = N (A(x))
A ∩T B(x) = T (A(x), B(x))
A ∪S B(x) = S(A(x), B(x))

Replacing the set theoretical operations in Table 2 by their fuzzy set theoretical counterparts, we
obtain

minsupp(A⇒ B) =
∑

x∈X
(A ∩T B)(x) (1)

and
maxsupp(A⇒ B) =

∑

x∈X
(coNA ∪S B)(x) (2)

Formula (1) corresponds to the measure of support that is commonly used for mining fuzzy asso-
ciation rules. Formula (2) seems to be the most intriguing one from the semantical point of view.
In the crisp case

x ∈ coA ∪ B ⇔ x ∈ coA ∨ x ∈ B
⇔ ¬(x ∈ A) ∨ x ∈ B
⇔ x ∈ A→ x ∈ B

revealing that the logical connective behind the maximum support is an implication. The fuzzy
logical counterpart of implication is the concept of implicator. An implicator I is a [0, 1]2 − [0, 1]
mapping such that I(x, .) is increasing and I(., x) is decreasing, and I(1, x) = x for all x in [0, 1],
and I(0, 0) = 0. The implicator at hand in Formula (2) is the so-called S-implicator induced by S
and N , defined by IS,N (x, y) = S(N (x), y) for all x and y in [0, 1]. Another well-known kind of
implicator is the residual implicator IT induced by a t-norm T in the following way

IT (x, y) = sup{λ|λ ∈ [0, 1] ∧ T (x,λ) � y}

for all x and y in [0, 1]. The question arises whether we can substitute the S-implicator in Formula
(2) by a residual implicator. Tables 3 and 4 recall some well-known t-norms and t-conorms, as
well as the implicators induced by them and the standard negator Ns(x) = 1− x for all x in [0, 1]
(which is omitted in the notation). Table 5 shows the different contributions of several transactions
x to maxsupp(A⇒ B) for all of these implicators. This contribution corresponds to the degree to
which x is a non-negative example. In most of the cases the S-implicators (on the left) and the
residual implicators (on the right) behave rather similar. A striking difference however appears
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A(x) B(x) ISM ISP ISW ITM ITP ITW
0.1 0.2 0.9 0.92 1 1 1 1
0.2 0.1 0.8 0.82 0.9 0.1 0.5 0.9
0.6 0.8 0.8 0.88 1 1 1 1
0.8 0.6 0.6 0.68 0.8 0.6 0.75 0.8
0.5 0.5 0.5 0.75 1 1 1 1
0.2 0.8 0.8 0.96 1 1 1 1
0.8 0.2 0.2 0.36 0.4 0.2 0.25 0.4

Table 5: Comparison of the contribution of some transactions

in the second example. It is caused by the low value of A(x) which is taken into account much
more by the S-implicators than by the residual implicators. The difference is the largest for ITM
which completely ignores A(x), and the smallest for ITW as the implicators induced by SW and
TW coincide.
An example can be called non-negative if it does not contradict the rule; so either if it is in

favour of the rule, or if it does not say anything about the rule. The latter situation arises when
A(x) is small. In this case S-implicators indeed tend to identify x as a non-negative example, while
residual implicators overlook it. Indeed if A(x) is low, then N (A(x)) tends to be high and hence so
does IS,N (A(x), B(x)) = S(N (A(x)), B(x)). If on the other hand we use a residual implicator IT ,
referring to the definition, we are basically looking for the largest λ such that T (A(x),λ) � B(x).
If A(x) � B(x) then λ will be 1 and the transaction is identified as a non-negative example.
However if A(x) is low but B(x) is even lower, we are in a way relying on λ to keep T (A(x),λ)
from surpassing B(x). Therefore λ tends to be low, hence x is not identified as a non-negative
example.
Finally we mention that Hüllermeier [5], [6] suggested the following implication-based measure

of support for a fuzzy association rule A⇒ B:

supp1(A⇒ B) =
∑

x∈X
I(A(x), B(x))

It is motivated by the fact that a transaction x with A(x) = 0.6 and B(x) = 0.4 only contributes to
degree 0.4 to the commonly used support (which is our Formula (1) defined by means of TM). This
is considered to be low since x \does hardly violate (and hence supports) the rule" [6]. We fully
agree on the first claim (x is a non-negative example to a high degree) but not on the second (being
a non-negative example does not imply being a positive example). Although the introduction of
fuzzy logical implicators in the measures used for mining fuzzy association rules in itself is very
meaningful, the author in [6] does not respect the fundamental difference between positive and
non-negative examples, which lies in those transactions that do not really tell us something about
the rule (i.e. that have a low membership degree in A). To deal with this problem of \trivial
support", Hüllermeier suggests to extend the measure of support to

supp2(A⇒ B) =
∑

x∈X
T (A(x), I(A(x), B(x)))

However if I is the residual implicator induced by a continuous t-norm T then supp2(A ⇒ B) =
min(A(x), B(x)) (see e.g. [7]) as is also noted in [6]. Hence in this case the new measure of
support introduced in [5] reduces to the commonly used one. Still the author prefers these residual
implicators over S-implicators, which seems to be in conflict with our findings described above.
However his arguments for doing so basically come down to the fact that S-implicators detect non-
negative examples overlooked by residual implicators, namely those that are not relevant to the
rule. In [5], [6] this is considered to be an unwanted side effect because the author is exclusively
trying to identify positive examples. As soon as one realizes that not the positive but the negative
examples (and hence also the non-negative examples) can be revealed by means of an implicator,
the preference of S-implicators over residual implicators becomes very natural.
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4 CONCLUSION

We refined the theory of association rules by exploiting the distinction between positive and negative
examples to introduce additional quality measures that may be used in the assessment of such rules.
Next, this simple but effective idea is generalized to the setting of fuzzy association rules, using
appropriate classes of fuzzy connectives. In the process, it is revealed that S-implicators adhere
closer to the intended semantics of positive versus negative examples than residual implicators.
The obvious next step will now be to re-think algorithms for identifying (fuzzy) association rules
on the basis of the newly obtained information.
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