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Abstract— This paper presents an attempt to embed and
unify research on intuitionistic fuzzy (IF) relations into a
broad, formal yet intuitive framework inspired by fuzzy re-
lational calculus. The need for the resulting “IF relational
calculus” is motivated in semantical terms of vagueness and
uncertainty; its basic definitions and results are introduced,
and opportunities and challenges specific to intuitionistic
fuzzy set (IFS) theory are highlighted.

Index Terms— Intuitionistic Fuzzy Set Theory, Relational
Calculus

I. Introduction

FUZZY relational calculus originated as a domain of
study in the seventies and the early eighties by the

seminal works of Zadeh [1] and Bandler and Kohout [2];
later on, this topic was eagerly embraced by the Fuzziness
and Uncertainty Modelling Research Unit (FUM in short)
at Ghent University, and never ceased to be a prominent
feature of its research, both theoretical and oriented to ap-
plications such as fuzzy morphology for image processing,
the representation of linguistic modifiers, approximate rea-
soning, fuzzy relational databases, fuzzy preference struc-
tures, fuzzy rough sets,. . . For a comprehensive introduc-
tion to fuzzy relational calculus, we refer to [3] and the
relevant chapters in [4] and [5].

In this paper, we aim to familiarize the reader with
the basic theory of relational calculus, directly applied to
intuitionistic fuzzy sets (IFSs). By the identification of
the latter as a special kind of L–fuzzy sets (Goguen, [6]),
the extension will be fairly straightforward but nonethe-
less instructive: by compounding our results with a cog-
nitive interpretation, we aim to divulge a new, relational
view of IFS theory, which will benefit the further cross–
fertilization between the theories involved (fuzzy and intu-
itionistic fuzzy logic in broad sense) and ultimately lead to
more sophisticated applications.

The paper is conceived as follows: in section 2, we re-
call fuzzy sets, L–fuzzy sets and intuitionistic fuzzy sets and
consider their connection. Section 3 introduces the concept
of an IF relation, its interpretation and its most important
associated operations, c.q. : composition, projection, cylin-
drical extension. In section 4, as two concrete applications
of the standard operations we study the intuitionistic com-
positional rule of inference (ICRI), and the representation
of linguistic modifiers, and motivate their use in the light
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of IFS theory. Section 5 concludes with some pointers for
future work.

We wish to stress that relational calculus is definitely not
a novel notion to the IFS community. Notably, P. Burillo
and H. Bustince have studied a panoply of properties of
IF relations [7], [8] and characterized various structures
of IF relations like (pre)orders, transitivity and similarity
relations [9]. H. Bustince [10] has further investigated the
construction of such structures by means of fuzzy relations.
S. De, R. Biswas and A. Roy [11] proposed an application of
IF relations in medical diagnosis that was later commented
on and given an alternative implementation by E. Szmidt
and J. Kacprzyk [12]. G. Deschrijver and E. E. Kerre have
generalized the Bandler–Kohout compositions of fuzzy re-
lations and their cuttings [13], [14]; C. Cornelis and G. De-
schrijver have outlined an extension of the compositional
rule of inference [15]; finally, C. Cornelis and E. Kerre have
developed a tentative interpretative scheme for the nascent
IF relational calculus in terms of possibility and necessity
assignments [16].

II. Fuzzy Sets, Intuitionistic Fuzzy Sets and

L–fuzzy Sets

Fuzzy sets were introduced by Zadeh in 1965 in [17].
A fuzzy set A in a universe U is a mapping from U to
the unit interval [0, 1]. For any u ∈ U , the number A(u)
is called the membership degree of u in A. This notion
has been extended by Goguen in 1967 to L-fuzzy sets [6],
where (L,≤L) denotes a complete lattice: an L–fuzzy set
in a universe U is a mapping from U to L. Intuitionistic
fuzzy sets, defined by Atanassov in 1983 [18], are another
generalization of fuzzy sets. While fuzzy sets give a degree
of membership of an element in a given set, IFSs give both
a degree of membership and of non–membership. Both
degrees belong to the interval [0, 1], and their sum should
not exceed 1. Formally, an IFS A in a universe U was
defined as an object of the form A = {(u, µA(u), νA(u)) |
u ∈ U}, where µA(u) is called the “degree of membership
of u in A” and νA(u), the “degree of non-membership of u
in A”, and where (∀u ∈ U)(µA(u) + νA(u) ≤ 1). πA(u) =
1 − µA(u) − νA(u) is called the “hesitation degree of the
element u to A”. The class of IFSs in a universe U is
denoted IFS(U).

G. Wang and Y. He in [19], and G. Deschrijver and
E. E. Kerre in [20] have shown that IFSs are L–fuzzy
sets w.r.t the complete lattice (L∗,≤L∗) defined by L∗ =
{(a1, a2) ∈ [0, 1]2 | a1 +a2 ≤ 1}; (a1, a2) ≤L∗ (b1, b2) ⇐⇒
a1 ≤ b1 ∧ a2 ≥ b2. Hence an IFS A can also be denoted
as an X → L∗ mapping. This equivalence gives way to
greater flexibility in calculating with membership and non–



membership degrees, since the pair formed by them is an
element of L∗, and often allows to obtain significantly more
compact formulas. The units of L∗ are given by 0L∗ = (0, 1)
and 1L∗ = (1, 0). In the sequel we will always use the fol-
lowing notation: if a ∈ L∗, then a1 is the first coordinate
and a2 is the second coordinate of a.

As in fuzzy set theory, the intersection and the union
of IFSs are defined by using triangular norms and
conorms. [21] An IF t–norm T is a commutative, as-
sociative, increasing (L∗)2 − L∗ mapping which satisfies
T (a, 1L∗) = a, for all a ∈ L∗. An IF t–conorm S is a com-
mutative, associative, increasing (L∗)2−L∗ mapping which
satisfies S(a, 0L∗) = a, for all a ∈ L∗. The intersection of
two IFSs A and B, respectively the union, is then defined
as, for all u ∈ U , A∩T B(u) = T (A(u), B(u)), A∪SB(u) =
S(A(u), B(u)). If we put T = (min,max), i.e. if T (a, b) =
(min(a1, b1), max(a2, b2)), for all a, b ∈ L∗, then we ob-
tain the definition of intersection given by Atanassov [22]:
A∩B(u) = (min(µA(u), µB(u)),max(νA(u), νB(u))). Note
that T = (min,max) is the infimum defined w.r.t. the or-
dering ≤L∗ on L∗. Similarly we obtain the traditional defi-
nition of the union of IFSs by putting S = (max,min) (this
is the supremum w.r.t. the ordering ≤L∗ defined on L∗). To
define the complement of IFSs, we use an IF negator: a de-
creasing L∗−L∗ mapping which satisfiesN (0L∗) = 1L∗ and
N (1L∗) = 0L∗ . The complement of an IFS is then defined
as, for all u ∈ U , coA(u) = N (A(u)). If we use the stan-
dard negation Ns on L∗, i.e. Ns(a1, a2) = (a2, a1), then
we obtain the complement as defined by Atanassov [22]:
coA(u) = (νA(u), µA(u)), for all u ∈ U .

III. Basic Definitions and Operations of

Intuitionistic Fuzzy Relational Calculus

This section is divided into four paragraphs: first we de-
fine and position the notion of IF relations with respect
to IFS and fuzzy set theory. The next two paragraphs
consider the elementary operations on IF relations of com-
position, projection and cylindrical extension. Finally we
list some potential properties of IF relations.

A. Definition and Motivation

Formally, an IF relation R between (not necessarily all
distinct) universes U1, U2, ..., Un (n ≥ 1) is an IFS in the
cartesian product U1 × ... × Un. Occasionally, we will use
the abbreviation IFR. If U = U1 = ... = Un, R is called
an n–ary relation in U . Because an IF relation is a special
case of an IFS, all operations on IFSs can be applied to
IF relations: intersection, union, complement, symmetrical
difference, . . .

The strength of relations as information models in a
knowledge–based system derives from their fundamental
ability to describe observed or predicted “connections”, ex-
pressed as facts or rules, between selected objects of dis-
course. Crisp relations like ∈, ⊆, =, . . . have served well in
developing rigourous mathematical frameworks. The use of
fuzzy relations originated from the observation that real–
life objects can be related to each other to a certain degree
(just like elements can belong to a fuzzy set to a certain de-

gree); in this sense they are able to model vagueness. They
are still intolerant of uncertainty, however, since there is no
means of attributing reliability or confidence information
to the membership degrees. Various frameworks have been
conceived to deal with this imperfection, amongst others:
• the certainty factor approach: a crisp real–valued num-
ber assigned to a fuzzy relation expresses the confidence in
the implied statement [23]
• interval–valued fuzzy (IVF) relations: membership de-
grees are “softened” by specifying an interval to which the
crisp membership degree belongs [24]
• IF relations: membership degrees are “softened” by pair-
ing them with a weakly dependent non–membership degree
• second–order fuzzy relations: an extension of the
interval–valued approach, where membership degrees
themselves become fuzzy sets [1]
We have ranked the alternative approaches according to
increasing expressivity: a certainty factor allows only to
incorporate general information about the statement as a
whole, while the others can differentiate on the level of in-
dividual elements of the universe. IF relations, then, are
syntactically equivalent with IVF relations: indeed, with
every value of (x1, x2) ∈ L∗ corresponds a unique interval
[x1, 1 − x2], and vice versa. A thorough study of the im-
plications (cognitive, in terms of interpretations; technical,
in terms of available algorithms and tools) of this equiv-
alence will be the object of a future paper. For now, we
will concentrate on the IF approach. A possible semantics
for IF relations taking inspiration from classical possibil-
ity theory was presented in [16]. Basically, the idea is to
treat an IF relation as an elastic restriction that allows us
to discriminate between the more or less plausible values
for a variable. For instance, a statement like “Pete is old”
does not allow us to infer Pete’s exact age, yet provides
some support in favour of the older ages (allowing that
those ages are, to a given extent, possible for him), as well
as negative evidence against the younger ones (expressing
some certainty or necessity that those ages can’t in fact be
his). We model this observation by indicating how much
the original condition “Pete is old” needs to be stretched
in order for Pete’s age to assume this particular value (this
accounts for the designation “elastic”): we assign two sep-
arate [0, 1]–valued degrees µ(u) and ν(u) to every age u in
the considered domain, the first one indicating the possi-
bility that Pete’s age assumes this particular value and the
second one reflecting our certainty that it differs from the
given u. In classical possibility theory, symmetry between
the two indexes is imposed, however, in a sense that from
knowledge that it is impossible that Pete is 25 years old
(µ(25) = 0), we immediately derive that it is completely
certain that he is not 25 (ν(25) = 1), and more generally
from µ(u) = α follows ν(u) = 1 − α. Taken together, the
various degrees µ(u) give rise to a fuzzy set. But what if
we cannot be sure that the observer is fully credible?

In [16], the authors argued that certainty, as opposed to
possibility, is a strong and decisive kind of knowledge, and
therefore in gathering evidence, it is sensible to be able to
first make tentative conjectures without being pinned down



on definite commitments, and later fine–tune observations
on the basis of estimated confidence in information sources.
In other words, we can have varying degrees of trust in an
observer, ranging from unconditional inconfidence to full
creditworthiness, and we should be able to model that trust
accordingly; which can be done conveniently by letting the
certainty degree ν(u) range between 0 and 1 − µ(u). This
justifies the use of a more general intuitionistic fuzzy, rather
than a fuzzy, relation as a model of describing observations.

B. Compositions of IF relations

A definition for the composition of binary IF relations
was first given by Bustince and Burillo [7], [8], in the case
that the involved universes are finite. We opted to con-
sider also infinite universes; in this way we can obtain a
straightforward extension of the sup–T composition from
fuzzy set theory: let T be an IF t-norm, R ∈ IFS(U × V )
and S ∈ IFS(V ×W ). The sup−T composition of R and
S is then the IFR between U and W defined as, for all
(u,w) ∈ U ×W , R ◦T S(u,w) = sup

v∈V
T (R(u, v), S(v, w)).

sup denotes the supremum in L∗. In a similar vein, for an
IF t–conorm S, R ∈ IFS(U × V ) and S ∈ IFS(V ×W ),
the inf −S composition of R and S is the IFR between U
and W defined as, for all (u,w) ∈ U ×W , R ◦S S(u,w) =
inf
v∈V
S(R(u, v), S(v, w)).

The above definition of the sup−T composition is a gen-
eralization of the definition in classical set theory, where the
composition of two relations R ⊆ U ×V and S ⊆ V ×W is
defined as R◦S = {(u,w) | (u,w) ∈ U×W∧uR∩Sw 6= ∅},
using the afterset uR = {v | v ∈ V ∧ (u, v) ∈ R} and
the foreset Sw = {v | v ∈ V ∧ (v, w) ∈ S}. This com-
position is sometimes called the round composition. The
relation R can be identified with its characteristic map-
ping, namely R(u, v) = 1, if (u, v) ∈ R; R(u, v) = 0 else;
and similarly for S. It is easily verified that the charac-
teristic mapping of the round composition is then given by
R ◦ S(u,w) = sup

v∈V
R(u, v) ∧B S(v, w), where ∧B stands for

the Boolean conjunction.
Denote by Rt the converse relation of R defined as Rt =
{(v, u) | (v, u) ∈ V × U ∧ (u, v) ∈ R}. The composition
R◦S is a relation from U to W , consisting of those couples
(u,w) for which there exists at least one element of V that
is in relation Rt with u and that is in relation S with w.
Consider the following example: let U be a set of patients,
V a set of symptoms and W a set of illnesses. Define the
relation R ⊆ U × V as R(u, v) = 1 if patient u shows
symptom v, and R(u, v) = 0 if patient u does not show
symptom v. Define S ⊆ V ×W as S(v, w) = 1 if symptom
v is a symptom of illness w, and S(v, w) = 0 else. Then
R ◦S(u,w) = 1 if patient u shows at least one symptom of
illness w. Therapists may also want to know whether the
symptoms shown by patient u are all symptoms of illness
w, or whether all the symptoms of illness w are shown
by patient u, or whether the symptoms shown by patient
u are exactly those of illness w. Therefore, Bandler and
Kohout [2] have defined the triangular compositions. The
subcomposition of R and S is defined as R/bkS = {(u,w) |

(u,w) ∈ U × W ∧ uR ⊆ Sw}. The supercomposition of
R and S is defined as R .bk S = {(u,w) | (u,w) ∈ U ×
W ∧ Sw ⊆ uR}. They also defined the ultracomposition
of R and S as R �bk S = {(u,w) | (u,w) ∈ U × W ∧
uR = Sw}. Then in the example, we have for instance
that R /bk S(u,w) is equal to 1 if all symptoms shown by
patient u are symptoms of illness w and equal to 0 else.

Bandler and Kohout have shown that the character-
istic mappings of these compositions can be found in
the following way [2]: R /bk S(u,w) = inf

v∈V
R(u, v) ⇒B

S(v, w), R .bk S(u,w) = inf
v∈V

R(u, v) ⇐B S(v, w), and

R �bk S(u,w) = inf
v∈V

R(u, v) ⇔B S(v, w), where ⇒B and

⇔B stand for the Boolean implication and equivalence, and
b⇐B a is defined as a⇒B b.

From the definition of the triangular compositions fol-
lows easily that co(dom(R)) × W ⊆ R /bk S and U ×
co(rng(S)) ⊆ R .bk S. The first expression means that if u
is not in the domain of R, then u is in relation R/bkS with
all elements of W , even if there is no element of V that is in
relation Rt with u. A similar remark holds for the second
expression. De Baets and Kerre [25], [26], [27] have there-
fore introduced the following definitions: the subcomposi-
tion R/S = {(u,w) | (u,w) ∈ U×W ∧∅ ⊂ uR ⊆ Sw}, the
supercomposition R . S = {(u,w) | (u,w) ∈ U ×W ∧∅ ⊂
Sw ⊆ uR} and the ultracomposition R � S = {(u,w) |
(u,w) ∈ U ×W ∧∅ ⊂ uR = Sw}.

Before we can give the definition of the triangular com-
positions of IFRs, we need some preliminary definitions.
An IF implicator I is an (L∗)2 − L∗ mapping which is
decreasing in its first component, increasing in its sec-
ond component and which satisfies the border conditions
I(0L∗ , 0L∗) = I(0L∗ , 1L∗) = I(1L∗ , 1L∗) = 1L∗ and
I(1L∗ , 0L∗) = 0L∗ . Clearly this is an extension of both
the Boolean implication and the fuzzy implication. An IF
implicator I is called a border implicator if I(1L∗ , x) = x,
for all x ∈ L∗. The afterset uR of u w.r.t. an IFR R be-
tween U and V is an IFS in V defined by uR(v) = R(u, v),
∀v ∈ V . The foreset Rv of v w.r.t. an IFR R between
U and V is the IFS in U defined by Rv(u) = R(u, v),
∀u ∈ U . The height of an IFS A in U , hgt(A) is defined as
hgt(A) = sup

u∈U
A(u) (notice that hgt(A) ∈ L∗). The plinth

of an IFS A in U , plt(A) is defined as plt(A) = inf
u∈U

A(u).

The domain of an IFR R between U and V is the IFS
dom(R) in U defined by dom(R)(u) = hgt(uR). The range
of an IFR R between U and V is the IFS rng(R) in V
defined by rng(R)(v) = hgt(Rv). The converse relation
Rt of an IF relation R between U and V is the IFR be-
tween V and U defined by Rt(v, u) = (µR(u, v), νR(u, v)),
∀v ∈ V, u ∈ U .

Let R be an IFR between U and V , S an IFR between
V and W , I an IF implicator, then the triangular sub- and
supercomposition of Bandler and Kohout are extended as
follows [13]: they are IFRs between U and W defined by,



for any u ∈ U , w ∈W ,

R /Ibk S(u,w) = inf
v∈V
I(R(u, v), S(v, w)) = plt I(uR, Sw),

R .Ibk S(u,w) = inf
v∈V
I(S(v, w), R(u, v)) = plt I(Sw, uR),

One can verify that in the classical case it holds that R /
S = (R /bk S) ∩ (dom(R) × rng(S)) and R . S = (R .bk

S) ∩ (dom(R) × rng(S)). On the other hand we have also
R/S = (R/bk S)∩ (R ◦S) and R.S = (R.bk S)∩ (R ◦S).
The first two expressions are generalized to IFRs as [13],
for any u ∈ U , w ∈W ,

R /Ib S(u,w) = inf
(

inf
v∈V
I(R(u, v), S(v, w)) ,

sup
v∈V

R(u, v), sup
v∈V

S(v, w)
)

= inf (plt I(uR, Sw),hgt(uR),hgt(Sw)) ,
R .Ib S(u,w) = inf (plt I(Sw, uR),hgt(uR),hgt(Sw)) ,

where inf denotes the infimum in L∗; while the last two
expressions are generalized as [13], for any u ∈ U , w ∈W ,

R /T ,Ik S(u,w) = inf
(

inf
v∈V
I(R(u, v), S(v, w)),

sup
v∈V

(R(u, v) ∧T S(v, w))
)

= inf (plt I(uR, Sw),hgt(uR ∩T Sw)) ,
R .T ,Ik S(u,w) = inf (plt I(Sw, uR),hgt(uR ∩T Sw)) .

The properties of these compositions are investigated in
[13], [14].

C. Projection and Cylindrical Extension of IF relations

The ideas of projection and cylindrical extension of fuzzy
relations were developed by Zadeh in [1]. Throughout this
section, unless stated otherwise, we assume that R denotes
an IF relation between U1, . . . , Un, i.e. R is an U1 × . . .×
Un → L∗ mapping.

Let I = (i1, . . . , ik) be a subsequence of (1, 2, . . . , n),
k ≤ n. The complementary sequence of I w.r.t. (1, 2, . . . , n)
is J = (j1, . . . , jl) such that {j1, . . . , jl} = {1, . . . , n} \
{i1, . . . , ik}.1 The projection of R on Xi1 × . . . ×
Xik is denoted RI and defined as RI(ui1 , . . . , uik) =
sup{R(x1, ...xn)|(xj1 , . . . , xjl) ∈ Uj1 × . . . × Ujl and xir =
uir , r = 1, . . . , k}, ∀(ui1 , ...uik) ∈ Ui1 × . . . × Uik . As
special cases of this definition for n = 2, we retrieve the
domain (I = (1)) and the range (I = (2)) of a binary
IF relation. RI is sometimes called the marginal restric-
tion of R to Ui1 × . . . × Uik . For convenience we will use
the notation Ri to denote a projection on a single uni-
verse Ui, i.e. I = (i). If it holds that R(u1, . . . , un) =
R1 × . . . × Rn(u1, . . . , un),∀(u1, . . . , un) ∈ U1 × . . . × Un
then R is called separable.

Conversely, starting from an IF relation RI between
Ui1 , . . . , Uik one can try to find the IF relations between

1For example, the complementary sequence of I = (1, 7, 9)
w.r.t. (1, 2, 3, 4, 5, 6, 7, 8, 9) is J = (2, 3, 4, 5, 6, 8).

U1, U2, . . . , Un such that their projection on Ui1 × . . .×Uik
will equal RI . Several IF relations may satisfy that prop-
erty; the greatest among them, in the sense that all oth-
ers are subsets of it, will be called the cylindrical exten-
sion RI of RI , an U1 × . . . × Un → L∗ mapping given by
the following definition: RI(u1, . . . , un) = R(ui1 , . . . , uik),
∀(u1, . . . , un) ∈ U1×. . .×Un. RI is called cylindrical exten-
sion of R because the value of R at each point (u1, . . . , un)
equals that at (u′1, . . . , u′n) provided ui1 = u′i1 , . . . , uik =
u′ik .

On the other hand, starting from our initial IF rela-
tion R, the projection RI of R on Ui1 × . . . × Uik for
an arbitrary subsequence I = (i1, . . . , ik), k < n, of
(1, 2, . . . , n) and its associated cylindrical extension RI
may be constructed. It follows easily that R ⊆ RI , and
hence R ⊆ RI1 ∩RI2 ∩ . . . ∩RIs where I1, . . . , Is represent
all possible genuine subsequences of (1, 2, . . . , n). Putting
Rmax = RI1 ∩RI2 ∩ . . .∩RIs , we find that Rmax represents
the greatest IF relation between U1, . . . , Un such that its
projections equal that of R.

We will motivate the above operations with a simple il-
lustrative example. Suppose that our knowledge about two
variables X and Y , taking values in the respective universes
U and V , is summed up by the following statements: “X
is P” and“Y is Q”. P and Q are assumed to be IFSs in U
and V , resp. This implicit conjunction can be considered a
restriction “X is R” on the ordered pair (X,Y ), where the
IF relation R imposes an elastic constraint on the values of
the couple (X,Y ). Plausibly assuming that P and Q are
marginal restrictions of R, we propose to model R as the
greatest IF relation between U and V (so as not to impose
any superfluous conditions) such that P and Q are still its
marginals. In other words, R = P ∩Q.

The composition of IF relations has a representation in
terms of cylindrical extension: consider IF relations R from
U to V and S from V to W . For arbitrary IF t–norm T , the
sup–T composition of R and S can be written as R ◦T S =
(R ∩T S)(1,3). In a similar vein, we can express the direct
image of an IFS A in U under an IF relation between U
and V by using cylindrical extension2: A◦T R = (R∩T A)2.

D. Useful Properties of binary IF relations

In this subsection we consider binary IF relations, i.e. IF
relations in IFS(U × U). For an exhaustive treatment of
this subject matter we refer to Bustince and Burillo [7], [8],
[9], [10].

We say that R ∈ IFS(U × U) is reflexive if for every
u ∈ U , R(u, u) = 1L∗ . R is called antireflexive if for every
u ∈ U , R(u, u) = 0L∗ . R is symmetric if for every (u, v) ∈
U × U , R(u, v) = R(v, u). R is called antisymmetrical
intuitionistic if for all (u, v) ∈ U × U , from u 6= v follows
µR(u, v) 6= µR(v, u), νR(u, v) 6= νR(v, u) and πR(u, v) =
πR(v, u). R is perfect antisymmetrical intuitionistic if for
every (u, v) ∈ U ×U such that u 6= v and either µR(u, v) >

2Note that we are using overloading of the symbol ◦T for the com-
position of IF relations.



0 or µR(u, v) = 0 ∧ νR(u, v) < 1, holds that µR(v, u) = 0
and νR(v, u) = 1. R is called transitive if R ⊇L∗ R ◦T R.
R is called C-transitive if R ⊆L∗ R ◦S R.
R is called an IF tolerance relation on U × U if R is

reflexive and symmetric, an IF preorder if it is reflexive and
transitive, an IF order if it is an antisymmetrical preorder,
an IF similarity relation if it is a symmetrical preorder.

IV. Applications of Intuitionistic Fuzzy

Relational Calculus

A. Intuitionistic Compositional Rule of Inference

In section III-C, by means of the operations on IF re-
lations, we have laid the foundations of a kind of calculus
of flexible restrictions as interpretations of IFR’s on the
semantical level that allows us to reason with statements
coloured by imprecision. Approximate reasoning, then, is
a domain of research that attempts to implement this cal-
culus in the solution of everyday problems that cannot be
handled adequately by precise techniques because they are
either too complex or do not require the precision of an ex-
act, crisp method. Nowadays, people start to accept such
“fuzzy systems” as flexible and convenient tools to solve a
myriad of ill–defined but otherwise (for humans) straight-
forward tasks: controlling fluid levels in a reactor, auto-
matical lens focussing in cameras, adjusting an aircraft’s
navigation to the change of winds, etc. The next step is
to try and meet more challenging requirements (e.g. as-
pects of logical consistency; incorporation of varying facets
of imprecision) in order to implement a successful artificial
reasoning unit. In terms of trade–off between efficiency
and expressiveness, IF relations score very well (compared
to fuzzy relations with or without certainty factors on one
hand, and second–order fuzzy relations on the other hand),
and therefore seem to fit the challenges well. In this sec-
tion we will study the generalization of the Compositional
Rule of Inference, the central tool in approximate reasoning
strategies.

We set the scene by providing a simple example. Con-
sider the following statements:

Oskar thinks Kurt is about the same size as him.
Kurt asserts he’s a bit smaller than 1 meter.

Moreover, assume Oskar and Kurt are cheeky children with
a lively fantasy, and their statements should be taken with
a pinch of salt (“a bit smaller” might be an understate-
ment), so that IF relations with π 6≡ 0 are in order to
model their observations. “a bit smaller than 1m” and
“about the same size as Kurt” could then be associated to
an IFS A and a binary IF relation R in R+ respectively
(we will not specify them, however). Representing Oskar
and Kurt’s length by variables X and Y we end up with
the following compact expressions:

X and Y are R (1)
X is A (2)

Joining the propositions as we did in the last section, a
flexible restriction on the ordered pair (X,Y ) emerges:

X and Y are R ∩A (3)

It should be noted that this statement gathers all informa-
tion we currently have about X and Y . If we want to use
this information to make an inference (another restriction)
about the value of Y , we will do so by taking the marginal
restriction of (3) to (the universe of) Y . We end up with:

Y is (R ∩A)2 = R ◦A (4)

An inference about Y thus emerges by composing an IFS
with an IF relation. This amounts for the choice of termi-
nology “intuitionistic compositional rule of inference”. The
composition in general may involve an arbitrary IF t–norm
T ; we arrive at the following pattern:

X is A
(X,Y ) is R
Y is B = A ◦T R

The example considered a very basic problem, namely that
of two interacting variables, where one is characterized in
isolation and the approximate relationship between the two
is given. In general, any number of relationships between
any number of variables may be provided, and an inference
about any combination of variables may be inquired. The
above procedure can fortunately be easily generalized, as
the algorithm below shows (to avoid notational clutter, we
describe the steps without referring to actual IF relations):
1. Take the cylindrical extension of all the given IF rela-
tions to the cartesian product of the universes of the ap-
pearing variables.
2. Take the intersection of these cylindrical extensions.
3. Project the result onto the universe of the variables
whose relationship is inquired about.
This scheme was denoted General Rule of Inference. [28]
Unlike the case presented in the example, in general the
result cannot be written down using IF composition.

The compositional rule of inference and its extension
have proven especially useful in rule–based systems. In
such an environment, a deduction pattern called General-
ized Modus Ponens (GMP):

IF X is A, THEN Y is B
X is A′

Y is B′

can be implemented using the CRI (the rule will be mod-
elled accordingly as an IF relation R). The study of this
pattern for IF relations was conducted by C. Cornelis and
G. Deschrijver in [15].

B. Linguistic Modifiers

A prerequisite for the applicability of the approximate
reasoning schemes discussed above is the availability of
suitable IFSs for the linguistic statements involved. Con-
structing them is typically one of the most difficult tasks
when developing an application. Therefore it is very useful
to have representations of linguistic modifiers such as very
and more or less at hand, since they allow for the automatic
construction of IFSs for modified terms from IFSs of the
original terms. In [29] an extension of Zadehs concentra-
tion and dilation operators .2 and .

1
2 was proposed to this



end. It is however well-known that even in the fuzzy set
theoretical case, these operators have the significant short-
coming of keeping the kernel and the support; hence they
can not make any distinction between e.g. being old to de-
gree 1 and being very old to degree 1. In [30] therefore an
alternative approach is proposed in which the context is
taken into account by means of an IF relation R in U that
models approximate equality. In particular, for every IF
set A in U , more or less A can then be modelled by A◦T R,
the direct image of A under R; we will denote it by R↑T A
in this context. Likewise very A can be represented by the
superdirect image of A under R, defined as

R↓IA(v) = inf
u∈U
I(R(u, v), A(u))

for all v in U . In this scheme T and I denote an IF t–norm
and an IF implicator as usual. The underlying semantics
is that v is very A if all elements resembling u are A, and
that u is more or less A if an element resembling u is A. If
R is reflexive (which is a very natural assumption for an IF
relation modelling approximate equality) and I is a bor-
der implicator, then this representational scheme respects
semantical entailment: very A ⊆ A ⊆ more or less A.

The question arises which conditions should be im-
posed on all “building-bricks” involved, in order for
the modification of the IFS A to be some kind of
aggregation of modifications of its composing parts.
In the representational scheme presented above, this
could come down to looking for conditions under which
R↑T A = (µR↑TµA, (co νR)↓IνA) and likewise R↓IA =
(µR↓IµA, (co νR)↑T νA), where ↑T and ↓I denote respec-
tively the fuzzy direct and superdirect image, using a t-
norm T on [0, 1] and a fuzzy implicator I. Furthermore it
should also be investigated whether the hesitation degree
should or should not be changed through modification of
the IFS, and how this can be met mathematically.

V. Conclusion

Replying to the need for knowledge–based systems pos-
sessing more sophisticated representation and manipula-
tion skills tolerant of vagueness and uncertainty, we intro-
duced Intuitionistic Fuzzy Relational Calculus as a frame-
work for processing imprecise data represented as IF rela-
tions. In IF relational calculus, IF relations describe incom-
plete and/or uncertain information on the values a variable
may assume. The added value of IF relations over fuzzy
relations lies in their ability to capture varying degrees of
reliability or confidence of information. Knowledge manip-
ulation is done by the IF extension of the General Rule
of Inference, a special instance of which, the Intuitionistic
Compositional Rule of Inference, applies amongst others
to relational knowledge expressed as if–then rules, and is
directly applicable in IF expert systems.
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