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Abstract

We bring to the surface the fundamental two-sidedness of knowledge
in the framework of association rules, until now only slumberingly present
in the measures of support and confidence. We identify the set of positive
as well as the set of negative examples which are not necessarily com-
plementary. Taking this into account we introduce new quality measures
comprising the existing ones. Finally, we carefully examine the general-
ization of our findings to fuzzy association rules.
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1 INTRODUCTION

The idea behind association rules [1] is straightforward and effective, which,
together with the increasing availability of large databases, probably accounts
for their success story. Coming from the world of shops and customers, the
underlying mechanism aims to identify frequent itemsets in market baskets,
i.e. groups of products frequently bought together. This valuable information
helps shop-keepers to make decisions about what to put on sale, how to place
merchandise on shelfs to maximize a cross-selling effect etc. Needless to say
the same mechanism can be exploited for knowledge discovery in databases in
general.

Suppose we have a data table containing records described by binary at-
tribute values. Let X be the non-empty, finite universe of these records. Each
record x in X corresponds to a transaction (a market basket). For each attribute
A, A(x) is either 1 or 0 indicating whether or not attribute A was purchased in
transaction x. An association rule is an expression of the form A ⇒ B in which
A and B are attributes (or sets of attributes), such as bread ⇒ butter. The
meaning is that when A is bought in a transaction, B is likely to be bought as
well. The symbol ⇒ does not have any further (mathematical) meaning. There
exist several measures to express the quality of an association rule, such as the
support (the number of transactions in which both A and B were bought) and
the confidence (the percentage of transactions containing A that contain B as
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well). The problem of mining association rules is to generate all association
rules that have support and confidence greater than user-specified thresholds.

In this respect association rule mining algorithms only look at positive ex-
amples: especially when determining the degree of support they only check how
many of the transactions are in favour of the rule. However, in the set of trans-
actions not in favour of the rule, an interesting distinction can be made between
those examples that contradict the rule and those that do not carry relevant
information for the rule. In ignoring this distinction, traditional association rule
mining algorithms do not address the fundamental two-sidedness of knowledge.

Active exploitation of this two-sidedness can enrich information technologies
significantly. A striking example is the rapid growing theory of intuitionistic
fuzzy sets [2]: by complementing the membership degree (familiar from fuzzy
sets) with a non-membership degree, a whole new spectrum of knowledge can
be expressed. In this paper we take a similar view, namely that “not being
a positive example” of a rule (i.e. not being a transaction that supports the
rule) is not the same as “being a negative example” (i.e. a transaction that
contradicts the rule). In Section 2 we will point out the true nature of positive
and negative examples in the framework of association rule mining, and, taking
them into account, we will define new measures of support and confidence com-
prising the commonly used measures. In Section 3 we will carefully examine the
generalization of our findings to fuzzy association rules.

2 POSITIVE AND NEGATIVE EXAMPLES

For ease of notation we will use the same symbol A to denote the attribute A
and the set of transactions having attribute value A(x) = 1, i.e. A(x) = 1 iff
x ∈ A, and A(x) = 0 iff x /∈ A. In this way, A is a subset of X. Furthermore
we will only deal with simple association rules A ⇒ B in which A and B are
both attributes (and not sets of attributes; note that this is not a real limitation
since we can always introduce a new attribute combining several others).

Support. The support of an association rule A ⇒ B is usually defined as1

supp(A ⇒ B) = |A ∩B|

i.e. the number of elements belonging to both A and B. Indeed only those
elements can be seen as positive examples, fully supporting the rule A ⇒ B.
Note that exactly those elements are also the positive examples of the rule
B ⇒ A, i.e. the support of B ⇒ A is the same as that of A ⇒ B.

As soon as one identifies these “supporters” of A ⇒ B as positive examples,
the question arises what a negative example might look like. Note that the rule
A ⇒ B is contradicted by exactly those records belonging to A but not to B.
The notion “negative example of A ⇒ B” is distinct from “negative example of
B ⇒ A” as is shown in Table 1. It is also clear from this table that “negative
example” differs from “non-positive example”, just like “positive example” and
“non-negative example” are distinct notions. The most interesting part however
is that they all give rise to different measures, as shown in Table 2. Naturally,

minsupp(A ⇒ B) ≤ maxsupp(A ⇒ B)
1or supp(A ⇒ B) = |A ∩B|/|X|
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x A ⇒ B B ⇒ A
positive example x ∈ A ∧ x ∈ B x ∈ A ∧ x ∈ B

non-positive example x /∈ A ∨ x /∈ B x /∈ A ∨ x /∈ B
negative example x ∈ A ∧ x /∈ B x /∈ A ∧ x ∈ B

non-negative example x /∈ A ∨ x ∈ B x ∈ A ∨ x /∈ B

Table 1: The nature of transaction x w.r.t. rules A ⇒ B and B ⇒ A

A ⇒ B
minimum support (minsupp) |A ∩B|

maximum opposition (maxopp) |coA ∪ coB|
minimum opposition (minopp) |A ∩ coB|
maximum support (maxsupp) |coA ∪B|

Table 2: Overview of measures

minopp(A ⇒ B) ≤ maxopp(A ⇒ B)

Since
maxopp(A ⇒ B) = |X| −minsupp(A ⇒ B)

minopp(A ⇒ B) = |X| −maxsupp(A ⇒ B)

in reality we are only dealing with two independent measures. We can for
instance choose to work with minsupp and maxsupp. The measure minsupp
corresponds to the symmetrical support (supp) that is traditionally studied,
while maxsupp is a non-symmetrical measure taking into account all examples
that do not contradict A ⇒ B. Another way of expressing the two opposition
measures in terms of the support measures is

minopp(A ⇒ coB) = minsupp(A ⇒ B)

maxopp(A ⇒ coB) = maxsupp(A ⇒ B)

Confidence. If the support of an association rule A ⇒ B exceeds a user-
specified threshold, its confidence is investigated. This is usually defined as

conf(A ⇒ B) =
supp(A ⇒ B)
supp(A ⇒ X)

=
supp(A ⇒ B)

supp(A ⇒ B) + supp(A ⇒ co B)

or [5]

confn(A ⇒ B) =
supp(A ⇒ B)

supp(A ⇒ co B)

The latter can be written in terms of the newly defined measures of support
and opposition:

confn(A ⇒ B) =
minsupp(A ⇒ B)
minopp(A ⇒ B)

Hence the confidence of a rule is the number of positive examples of the rule
divided by the number of negative examples. Using the measures of maximum
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support and opposition as well, we introduce two new measures of confidence,
namely pessimistic and optimistic confidence:

confp(A ⇒ B) =
minsupp(A ⇒ B)
maxopp(A ⇒ B)

confo(A ⇒ B) =
maxsupp(A ⇒ B)
minopp(A ⇒ B)

When determining the pessimistic confidence of a rule bread ⇒ butter we have
the following assumption in mind: if those people who did not buy bread, would
have bought bread, they would not have bought butter as well. For the opti-
mistic confidence measure on the other hand we assume that if those people who
did not buy bread, would have bought bread, they would have bought butter
as well. Naturally: confp(A ⇒ B) ≤ confn(A ⇒ B) ≤ confo(A ⇒ B). Since all
these measures of confidence are defined in terms of measures of opposition and
support, and furthermore the opposition measures can be described in terms of
the support measures, in the remainder we will focus on minsupp and maxsupp.

3 FUZZY ASSOCIATION RULES

In most real life applications, databases contain many other attribute values
besides 0 and 1. Very common for instance are quantitative attributes such
as age or income, taking values from an ordinal scale. One way of dealing
with a quantitative attribute is to replace it by a few other attributes that
partition the range of the original one, such as low, medium and high. Now one
can consider these new attributes as binary ones, which reduces the problem
to the mining procedure described above (the generated rules are now called
quantitative association rules [8]). It is however far more intuitively justifiable
to allow attribute values from the interval [0, 1] (instead of just {0, 1}) indicating
the degree to which the record has the attribute. In this way attributes are
no longer binary but fuzzy. The corresponding mining process yields fuzzy
(quantitative) association rules (see e.g. [3], [6]).

To obtain such rules the measures discussed above have to be generalized in
a suitable way. The power of a fuzzy set A in a finite universe X was introduced
as a generalization of the classical concept of cardinality of a crisp set [4]. It is
defined as

|A| =
∑
x∈X

A(x)

Fuzzy set theoretical counterparts of complement, intersection, and union are
usually defined by means of a negator, a t-norm, and a t-conorm. Recall that
an increasing, associative and commutative [0, 1]2 − [0, 1] mapping is called a t-
norm T if it satisfies T (x, 1) = x for all x in [0, 1], and a t-conorm S if it satisfies
S(x, 0) = x for all x in [0, 1]. A negator N is a decreasing [0, 1]− [0, 1]-mapping
satisfying N (0) = 1 and N (1) = 0. For A and B fuzzy sets in X:

coNA(x) = N (A(x))
A ∩T B(x) = T (A(x), B(x))
A ∪S B(x) = S(A(x), B(x))

Replacing the set theoretical operations in Table 2 by their fuzzy set theoretical
counterparts, we obtain

minsupp(A ⇒ B) =
∑
x∈X

(A ∩T B)(x) (1)
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t− norm t− conorm
TM(x, y) = min(x, y) SM(x, y) = max(x, y)

TP(x, y) = xy SP(x, y) = x + y − xy
TW(x, y) = max(x + y − 1, 0) SW(x, y) = min(x + y, 1)

Table 3: Well-known t-norms and t-conorms

S− implicator Residual implicator

ISM(x, y) = max(1− x, y) ITM(x, y) =
{

1, if x ≤ y
y, otherwise

ISP(x, y) = 1− x + xy ITP(x, y) =
{

1, if x ≤ y
y
x , otherwise

ISW(x, y) = min(1− x + y, 1) ITW(x, y) = min(1− x + y, 1)

Table 4: Well-known implicators

and
maxsupp(A ⇒ B) =

∑
x∈X

(coNA ∪S B)(x) (2)

Formula (1) corresponds to the measure of support that is commonly used for
mining fuzzy association rules. Formula (2) seems to be the most intriguing one
from the semantical point of view. In the crisp case

x ∈ coA ∪B ⇔ x ∈ coA ∨ x ∈ B
⇔ ¬(x ∈ A) ∨ x ∈ B
⇔ x ∈ A → x ∈ B

revealing that the logical connective behind the maximum support is an impli-
cation. The fuzzy logical counterpart of implication is the concept of implicator.
An implicator I is a [0, 1]2 − [0, 1] mapping such that I(x, .) is increasing and
I(., x) is decreasing, and I(1, x) = x for all x in [0, 1], and I(0, 0) = 0. The
implicator at hand in Formula (2) is the so-called S-implicator induced by S
and N , defined by IS,N (x, y) = S(N (x), y) for all x and y in [0, 1]. Another
well-known kind of implicator is the residual implicator IT induced by a t-norm
T in the following way

IT (x, y) = sup{λ|λ ∈ [0, 1] ∧ T (x, λ) ≤ y}

for all x and y in [0, 1]. The question arises whether we can substitute the S-
implicator in Formula (2) by a residual implicator. Tables 3 and 4 recall some
well-known t-norms and t-conorms, as well as the implicators induced by them
and the standard negator Ns(x) = 1−x for all x in [0, 1] (which is omitted in the
notation). Table 5 shows the different contributions of several transactions x
to maxsupp(A ⇒ B) for all of these implicators. This contribution corresponds
to the degree to which x is a non-negative example. In most of the cases the
S-implicators (on the left) and the residual implicators (on the right) behave
rather similar. A striking difference however appears in the second example. It
is caused by the low value of A(x) which is taken into account much more by the
S-implicators than by the residual implicators. The difference is the largest for
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A(x) B(x) ISM ISP ISW ITM ITP ITW

0.1 0.2 0.9 0.92 1 1 1 1
0.2 0.1 0.8 0.82 0.9 0.1 0.5 0.9
0.6 0.8 0.8 0.88 1 1 1 1
0.8 0.6 0.6 0.68 0.8 0.6 0.75 0.8
0.5 0.5 0.5 0.75 1 1 1 1
0.2 0.8 0.8 0.96 1 1 1 1
0.8 0.2 0.2 0.36 0.4 0.2 0.25 0.4

Table 5: Comparison of the contribution of some transactions

ITM which completely ignores A(x), and the smallest for ITW as the implicators
induced by SW and TW coincide.

An example can be called non-negative if it does not contradict the rule;
so either if it is in favour of the rule, or if it does not say anything about the
rule. The latter situation arises when A(x) is small. In this case S-implicators
indeed tend to identify x as a non-negative example, while residual implicators
overlook it. Indeed if A(x) is low, then N (A(x)) tends to be high and hence
so does IS,N (A(x), B(x)) = S(N (A(x)), B(x)). If on the other hand we use a
residual implicator IT , referring to the definition, we are basically looking for
the largest λ such that T (A(x), λ) ≤ B(x). If A(x) ≤ B(x) then λ will be 1
and the transaction is identified as a non-negative example. However if A(x)
is low but B(x) is even lower, we are in a way relying on λ to keep T (A(x), λ)
from surpassing B(x). Therefore λ tends to be low, hence x is not identified as
a non-negative example.

Finally we mention that Hüllermeier [5], [6] suggested the following implication-
based measure of support for a fuzzy association rule A ⇒ B:

supp1(A ⇒ B) =
∑
x∈X

I(A(x), B(x))

It is motivated by the fact that a transaction x with A(x) = 0.6 and B(x) = 0.4
only contributes to degree 0.4 to the commonly used support (which is our
Formula (1) defined by means of TM). This is considered to be low since x “does
hardly violate (and hence supports) the rule” [6]. We fully agree on the first claim
(x is a non-negative example to a high degree) but not on the second (being a
non-negative example does not imply being a positive example). Although the
introduction of fuzzy logical implicators in the measures used for mining fuzzy
association rules in itself is very meaningful, the author in [6] does not respect
the fundamental difference between positive and non-negative examples, which
lies in those transactions that do not really tell us something about the rule
(i.e. that have a low membership degree in A). To deal with this problem of
“trivial support”, Hüllermeier suggests to extend the measure of support to

supp2(A ⇒ B) =
∑
x∈X

T (A(x), I(A(x), B(x)))

However if I is the residual implicator induced by a continuous t-norm T then
supp2(A ⇒ B) = min(A(x), B(x)) (see e.g. [7]) as is also noted in [6]. Hence in
this case the new measure of support introduced in [5] reduces to the commonly
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used one. Still the author prefers these residual implicators over S-implicators,
which seems to be in conflict with our findings described above. However his
arguments for doing so basically come down to the fact that S-implicators detect
non-negative examples overlooked by residual implicators, namely those that are
not relevant to the rule. In [5], [6] this is considered to be an unwanted side
effect because the author is exclusively trying to identify positive examples. As
soon as one realizes that not the positive but the negative examples (and hence
also the non-negative examples) can be revealed by means of an implicator, the
preference of S-implicators over residual implicators becomes very natural.

4 CONCLUSION

We refined the theory of association rules by exploiting the distinction between
positive and negative examples to introduce additional quality measures that
may be used in the assessment of such rules. Next, this simple but effective
idea is generalized to the setting of fuzzy association rules, using appropriate
classes of fuzzy connectives. In the process, it is revealed that S-implicators
adhere closer to the intended semantics of positive versus negative examples
than residual implicators. The obvious next step will now be to re-think algo-
rithms for identifying (fuzzy) association rules on the basis of the newly obtained
information.
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